网上交易平台: AI科技大本营

本文来源:http://www.661ib.com/www_moe_gov_cn/

申博现金网怎么样,《规定》从政策支持、教育推广、基础设施建设、机制体制改革等多个方面为冰雪产业的健康发展提供有力保障。  习近平指出,做好高校思想政治工作,要因事而化、因时而进、因势而新。”芯片行业正在加速整合,并购与收购不断发生,谢清江对合并和收购保持开放态度。中小电商企业大多是草根出身,有些基本上就是夫妻老婆店。

在那时,没有人看好小米模式,直到小米手机不断的卖脱销之后,小米的整个模式从UI设计到产品设计,从供应渠道到销售渠道,被不断的复制。  1999年,家电行业打起了价格战,对于定价偏高的方太而言,这无异于一次残酷的洗牌。正是如此,才有了我上篇文章中写到的"四种人"——那些想走又能走的人最终选择了离开这里,那些想走却不能走的整日抱怨体制,那些不想走也不能走的昏昏度日,剩下那些能走却不想走的痛苦挣扎……一、运营商正在经历什么?借用双城记那段经典开场白:这是一个最好的时代,这是一个最坏的时代。硬件指标系数高红辣椒醉视标准版采用了5英寸大小的屏幕,分辨率为1280×720像素;搭载联发科四核64位处理器;2GB+16GB的内存组合;采用了1300万像素摄像头+800万前置镜头的组合,支持PDAF相位对焦。

她无比困惑,“我一直觉得教育的原则首先是教会孩子做一个诚实、正直的人,教育的过程比结果更重要。飞象网讯(计育青/文)11月25日,随着酷派新品锋尚Max解开面纱,一个变化中的酷派、转型中的酷派展现在公众面前:重塑中高端,推出新LOGO标识,树立全新品牌,又启动“合作人计划”大刀阔斧地调整渠道,都让人看到了一个全新的酷派。任正非:彭老师别客气,我们是老朋友了,当年华为处于混沌期和迷惘期时,你和人大教授团队做的两件事,对华为的发展还是有益的,一是你们编的大部头的介绍欧美企业管理制度的白皮书(注:《现代管理制度程序方法范例全集》八卷本共1千余万字,1993年由人大出版社出版,彭剑锋主编),让中国企业进行制度建设有了基本参照范本;二是我们共同创造了《华为基本法》。WRC-15还决定,在79GHz频段(WRC)进行高清晰度短距汽车雷达运行所需射频频谱的划分。

人工智能技术和产业社区

9月推荐 | 精选机器学习文章Top10

版权声明:本文为博主原创文章,未经博主允许不得转载。 /blog_csdn_net/dQCFKyQDXYm3F8rB0/article/details/82783638

640?wx_fmt=jpeg


作者 | MyBridge

译者 | 王天宇

编辑 | Jane

出品 | AI科技大本营


【导读】我们从过去一个月近 1400 篇有关机器学习的文章中,精心挑选出了最热门的 10 篇(前 0.7%),希望能有助于大家的学习。


(此前发布过多篇收藏党喜欢的文章,也是来自Mybridge:① 9月推荐 | 从近1000篇Python文章中精选Top108月精选Python开源项目Top10? ③?精选机器学习开源项目Top10 ④?7月Python和机器学习最佳开源项目Top 10! ⑤?Python热文Top10,精选自1000篇文章? 干货 | 1400篇机器学习的文章中,这10篇是最棒的!



前言



本次推荐的系列文章涉及:游戏人工智能、机械手操纵、舞蹈、机器翻译新突破、行人计数器、神经网络内部数学原理、神经算术、TensorFlow、AlphaGo Zero 算法、Uber 客服系统。


1.游戏人工智能入门指南


该文章介绍了游戏人工智能中的常见概念,它们在开发过程中的作用,以及如何上手进行实际操作。作者通过一个简单的小游戏 Pong 展示了游戏开发中的人工智能,文中所用的代码示例大多为伪代码,所以没有特定的编程语言限制。内容大致分为以下几个方面:


  • 什么是游戏人工智能

  • 游戏人工智能中的约束

  • 基本决策与高级决策

  • 运动与导航

  • 制定计划

  • 学习与自适应

  • 知识表示

  • ? ? ?? 640?wx_fmt=jpeg ?? ? ?

阅读链接:

/www_gamedev_net/articles/programming/artificial-intelligence/the-total-beginners-guide-to-game-ai-r4942?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


2.基于强化学习的灵巧操作:高效、高适应性、低耗


该文章介绍了如何通过深度强化学习来控制灵巧手的多种操作任务,这种方法使用了低耗硬件,运行更加高效,而且引入了示范和模拟来加速学习进程,有助于提高灵巧手的适应性。同时,在实际训练过程中还面临许多问题和挑战,如机械手容易迅速发烫、强化学习所需的反馈需要手动完成等问题。

? ? ? ?640?wx_fmt=jpeg ?? ? ?

阅读链接:

/bair_berkeley_edu/blog/2018/08/31/dexterous-manip/?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


3. “跟我一起做” —— 动作迁移的实现方法


该论文介绍了一种实现动作迁移的方法,给定一个人跳舞的源视频,我们可以将舞蹈动作迁移到另一个动作不同的目标体上。该团队将其看作一个逐帧进行图对图迁移的问题,将动作检测作为源和目标之间的中间语言,学习了从动作图像到目标对象表现的映射,并最终生成视频。

? ? ? ?640?wx_fmt=jpeg ?? ? ?

阅读链接:

/bair_berkeley_edu/blog/2018/08/31/dexterous-manip/?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

论文链接:

/arxiv_org/abs/1808.07371

视频链接:

/www_youtube_com/watch?v=PCBTZh41Ris&feature=youtu.be


4.无监督机器翻译:面向多种语言,更快速,更精准


自动翻译功能对 Facebook 来说至关重要,因为用户要选择自己所需的语言进行沟通和交流。该团队在 2018 EMNLP 大会上介绍了有关无监督翻译的工作内容,将此前最先进的无监督方法进行了优化,在对许多小语种的翻译上取得了显著效果,同时为世界上大多数语言提供了更快速、准确的翻译。文章为读者展示了新方法的思路和原理,并给出了未来进一步优化的方向。

? ? ? ?640?wx_fmt=jpeg ?? ? ?

阅读链接:

/code_fb_com/ai-research/unsupervised-machine-translation-a-novel-approach-to-provide-fast-accurate-translations-for-more-languages/?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


5.利用 OpenCV 建立行人计数器


基于 OpenCV 的行人计数器始终是 PyImageSearch 上的热门话题,该文章介绍了如何用 OpenCV 和 Python 建立行人计数器,即实时记录进入和离开一家门店的人数。文章内容包括以下几个部分:


  • 列出所需的 Python 库

  • 介绍项目的大致结构

  • 讲解物体检测算法的原理

  • 创建可追踪的对象

  • 基于 OpenCV 和 Python 创建计数器

  • 加载视频,进行测试

? ? ? ?640?wx_fmt=jpeg ?? ? ?

阅读链接:

/www_pyimagesearch_com/2018/08/13/opencv-people-counter?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


6.探索深度网络内部的数学原理


如今我们在深度学习过程中,只需直接引入一些库,编写数行代码,无需担心权重矩阵也不必决定使用哪些激活函数,但了解神经网络的内部原理有助于结构选择,参数调试和后续的优化。该文章为我们讲述了隐藏在神经网络内部的数学原理,分别从神经元、神经层、矢量化、激活函数、损失函数、后向传播算法几个方面进行了详细解读。

? ? ? 640?wx_fmt=jpeg ?? ? ?

阅读链接:

/towardsdatascience_com/https-medium-com-piotr-skalski92-deep-dive-into-deep-networks-math-17660bc376ba


7.神经算术逻辑单元


神经网络可以学习如何表征和操纵数字信息,但遇到训练过程中未见过的数据会表现不佳。该论文提出了一种由神经算术逻辑单元 (Neural Arithmetic Logic Units, NALU) 加强的神经网络,这种网络可以追踪时间,基于图像数量执行计算,将数字语言转化为数值标量,执行计算代码,并对图像中的物体进行计数。 ?? 640?wx_fmt=jpeg ?? ? ?

阅读链接:

/arxiv_org/abs/1808.00508?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more


8.关于 TensorFlow 你必须知道的9件事


该文章的作者是 Google 的首席决策工程师 Cassie Kozyrkov,她在文章中总结分享了关于 TensorFlow 的 9 个重要特性,如便捷的神经网络创建方式、适用于多种语言、专用的硬件设备、新型数据流等等。

? ?? 640?wx_fmt=jpeg ?? ? ?

阅读链接:

/hackernoon_com/9-things-you-should-know-about-tensorflow-9cf0a05e4995


9.DeepMind 阿尔法狗 Zero 详解

这是一段介绍阿尔法狗 Zero 算法的视频,该算法是由 DeepMind 公司开发的,它通过自我训练打败了世界上最好的围棋职业选手。在训练过程中,阿尔法狗反复地与自己进行对战,在没有人类玩家策略输入的情况下,取得了越来越好的效果。这段视频还用代码和动画相结合的方式,展示了算法中用到的神经网络的内部组成。

? ? ? ?640?wx_fmt=jpeg ?? ? ?

视频链接:

/www_youtube_com/watch?v=UzYeqAJ2bA8

代码链接:

/github_com/Zeta36/chess-alpha-zero


10.基于深度学习的升级版 Uber COTA 客服系统


今年年初,Uber 推出了基于 NLP 和机器学习构建的 COTA 客服系统。利用该系统,Uber 可以快速高效地解决 90% 以上的客服问题。COTA v1 系统对 Uber 来说只是一个开始,Uber 团队利用深度学习对该系统进行了进一步升级,提升了模型性能,提高了事件处理速度和用户满意度,COTA v2 系统诞生了。该文章为我们详细介绍了升级版 COTA 系统模型的内部原理,以及实际部署过程中遇到的困难。?

? ? ??640?wx_fmt=png阅读链接:/eng_uber_com/cota-v2/


原文链接:

/medium_mybridge_co/machine-learning-top-10-articles-for-the-past-month-v-sep-2018-ccd976f6544f


--【完】--


寻找2018最佳AI应用案例

AI科技大本营希望找到在汽车、金融、教育、医疗、安防、零售、家居、文娱、工业等 9 大行业的最佳 AI 应用案例,记录 AI 时代影响人类发展的变革性产品/解决方案。


如果您有优秀的 AI 产品/技术解决方案,欢迎【扫码提交】,参与评选


640?wx_fmt=jpeg


点击「阅读原文」,查看案例分享者特别奖励

展开阅读全文
申博现金网怎么样

没有更多推荐了,申博现金网怎么样

申博太阳城直营网 申博管理网直营 申博会员网址 申博sunbet菲律宾官网 新版申博直营网 太阳城申博官方直营网
申博娱乐 申博游戏手机网址 菲律宾申博直营网 申博电子游戏备用网址 www.99psb.com www.77sbc.com
申博管理登入 太阳城申博游戏下载官方 菲律宾申博官方网址登入 申博怎么开户 申博138娱乐支付宝充值 老虎机支付宝充值